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Gonor [II has considered a nonviscous hypersonic flow around a circular 

cone with an angle qf attack a. He sought a solution in the form of a 

power series in E = (y - l)/(y + 1) (where y is the adiabatic index), 

and obtained the first term of the expansion in closed parametric form. 

In the present work it is shown that near the cone surface there exists a 

“vortex layer” in which the solution can not be approximated by means of 

a partial sum of the power series in E. Because of this, the theory of 

Gonor does not offer the possibility of determining the velocity compo- 

nents on the surface of the cone. Here it is shown how the velocity com- 

ponents can be found on the cone surface with a precision of O(E) by 

starting out with Gonor’s solution. 

1. Let us consider a stationary flow around a circular cone with semi- 

vertex angle 0,. The flow is that of a nonviscous homogeneous gas. It 

has a hypersonic velocity with an angle of attack a in a spherical system 

of coordinates r, 8, Q whose axis coincides with the cone axis (see 

figure) . 

Let us denote by u, v and II, the components of the velocity vector of 

the gas particles in the directions of increasing r, 8 and Q; p and p 
will denote pressure and density, respectively. Quantities which are re- 
lated to the undisturbed flow we shall mark with a right superscript o 

(V” is the velocity, M” is the Mach ‘number of the undisturbed flow). 

We shall treat this problem in the frame of the theory of conical 

flow, when u, V, IO, p and p do not depend on r. The eouations of con- 

tinuity, momentum, and energy can be expressed in this case in the 

following form: 
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2yu sin 6 + (pv sin e), + (pzu), = 0 

vUe+WCSCeu,-v~-uU’~=O 

1 ‘Ve+Wcsc*v~+6p~+uv-~=0 
29 + v* + w* 

2 srp -_=~+L_Z_ 
r--i P T--lP” 

(1.1) 

(1.2) 

(1.3) 

The subscripts 8 and go indicate differentiation, y is the adiabatic 
index; the gas is assumed to be an ideal gas. After the elimination of p, 
Equation (1.1) can be represented in the form (a is the velocity of 
sound) : 

(a’ - 83) sin fjpe = (~8 - aa) W, + VW (sin 6Ju~g + uq) + 2~ (V” + w* - 2aa) sin 0 - Ai sin 0 

I .o = aa I@ - + {z&a + vq- wa - P)) (1.6) 

2. III solving this problem, Gonor [l] used G.G. Chernyi’s method of 
exnanding the solution in powers of F. =: (y - l)/(y + 1) (under the con- 
dition that @ = l/@*(y - 1) 

In the region between the 

tion was sought in the form 

be of the order of 1 or lower when E - 0). 

cone surface and the shock wave, the solu- 

u=uo+eui+..., u =6v*+.&~+..., w=Wofswl+... c4.f) 
1 

P=po+~Px+.-., P = ~POfPl$_..* 

The chosen independent variables were rp, v, where ‘y = con& .on the 
curves of cow&sot eatropy (0 *Im expressed also in the fora 8 = 3, + 
E6e + AI + . . .I. It is expedient, for what follows, to introduce vari- 

able6 of the “boundary layer” directly into the physical space: 

% = (e - e,) s-r, cp = cp (2.2) 

3. We shall show that on the cone surface the velocity coayronents u 
and W, determined br (2.1). do not satfsfg 
8 = Gk can be written in the form 

Substituting into this the values given in c2.1). we obtain 

k&nation (1.2). which for 
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I i 
W= &&UU,P Wl = 7 UIU’ *I) * an 4 (3.1) 

In Gonor’s theory cl], we = 0, when 0 = 8,. and uecp # 0, and, hence, 
(3.1) is not satisfied. The inapplicability of the expansion (2.1) in 
the neighborhood of the cone is also revealed by the fact that in Sonor’s 
solution the surface of the cone is not a surface of constant entropy. 

4. In order to find u and w when 8 = 8,. we use the method bs whfch 
Will&t [23 determined u and w on the cone in a supersonic flow. The sur- 
face of the cone is a stream surface which begins on the shock wave when 
cp = T. In view of this, the entropy on the cone surface must have the 
same value as it has on the shock wave when Q = TI (see, for example, 131). 

If one sets 8 (for the shock wave with Q = n) equal to 8* = elt + 
et)* f..,, considers the conditions at the discontinuity when Q = u. 
takes account of the fact that p/p7 = const on the considered flow sur- 
face, and eliminates p from Bernoulli’s equation (1.4), then one obtains, 
with 8 = Ba, the equation 

x i+ [ 
33 

sinZ (a + tr*) I 
= (i + 2p)P ( I T-1 

P= j$,fJZ(T_i) * s=y > 
(v=O) 

Let us assume that on the cone surface, a. I and p can be expressed 
in the form 

u = upx + SUIX + . . . , w = wax + ewp + . . . I p = pox + sp:* + . . . (4.2) 

Substituting (4.2) and 8* = e1 + e#* f . . . into (4.11, expanding the 
result in powers of E, and equating coefficients of like powers of E, 
we obtain 

up + wp = v* cost (LY + 8,) (4.3) 

WO+$ + uoxuix + V* 
{ 

6* cos (a + Q,) sin (a + 6,,) + (4.4) 

PO” + [sin* (a + $& + 281 ln fyw si$ (a + f-j,) 
> 

Substituting (4.2) into (1.2) with 8 = 8*. we obtain in an analogous 

manner 
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Substitution of (4.5) into (4.3) leads to the differential equation 

(with 6 = 6,) 

The unique solution of (4.6) satisfying the condition 

wo* = 
1 

y u srn 6, Opp x=O for rp=O,n 

will be 

u&” = v” co9 (tx + 6*), WO*~O (4*7) 

prom (4.4), (4.5) and (4.7) we now obtain 

C sin2 (a + f&l + 33 pOVoa sin2 (a + 6*) 
Ul x zz p - 6* sin (a + 6,) + ~0s (a + 6,) In pox 1 (4.6) 

VJrX = - V” 
sine (a + 6,) 4 26 polpx 
sin e, ~0s (am 3 

From (4.7) it follows that the quantity v,.,~ with 8 = 6,‘ is given 
correctly by 6onor’ s solution, but this is not the ease for I+,. 

5. Let us investigate the behavior of the solution near the cone sur- 
face. From (4.7). (4.8) and (1.8) it follows that when e = 8, 

u. _-_ - 340 + o(E) 

Therefore, in the neighborhood of 6 = 8, 

v= - 2uox fe - 0,) + 0 [E (e - e,)] + 0 (e - e,) = - 2V” cos (a + ek) e6 + 0 (~6) (5.1) 

while tp can be expressed in the form 

w = ujo’ cs, q,)+ EU.lX (q,) + 0 O$ (5.2) 

where ~~‘(0, 9) 5 0. (If [ionor’s theory determines ma Correctly not only 
when 6 = 8, but also in some neighborhood of 8 = 6k, then we’ = so.) 

We now introduce into our discussion the quantity 

substituting (5.1) and (5.2) into (1.5), drooping the Small terms, 
and passing from 8 to6, we obtain an equation for S 
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The general solution (5.3) has the structure 

Here f is an arbitrary function while the function Q satisfies the 

equation 

(5.3) 

(5.5) 

with the boundary condition 6 = 0, Q = 1. 

From (5.4) and (5.5) it is clear that for small values of 6. the 

function S can not be approximated by a finite partial sum of a power 

series in E, because such an approximation would not be valid for tiE, or 

for Q. 

For example , every partial sum of the series 

6’ = P’ =r 1 8 In -i 6 -+ +- (e In I%)~ + . . . 

becomes infinite when 6 = 0, while 6’ = 0 when 8 = 0. 

The possibility of expanding S as a convergent series in E is related 

to the possibility of expanding 6’ and Q in such series. For W this 

is possible if 6 = O(E), because E In E is small for small E; the be- 

havior of Q is determined by the function h. 

If one assumes that s,,’ = s,,, then h - 4 6, and with 6 = O(E), the 

function Q can be expressed as the series 

For S we have the following expansion in powers of E: 

A study of the equations of the system (1.1) to (1.5) reveals that 

there are no obstacles to the expansion of the other solution quantities 

in power series of E when 0 = O(s). One may. therefore, expect the ex- 

pansion (2.1) to represent the solution outside the vortex layer of 

thickness 6 = O(e), and one may assume that, when * = O(E), S can be ex- 

pressed in the form 
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From (5.6) and (5.7) we obtain 

One finds also that 

If one Passes from 8 to 6,in the equations (1.1) to (1.51, substitutes 
in them the expansion (2.1)) and obtains the equations for ~1, ~1, “1, 
p1 and pl, then one can establish that if ~1 # 0 when 6 = 0, pl - log 8, 
and ul - log 6 when 6 - 0. This confirms the above assertion. 

Prom Equation (1.3) one can see that pe = O(E) in the vortex layer. 
Therefore, ths Pressure change through the vortex layer of thickness 
8-6,=e 6 = 0(a2) is of the order 0(e3). 

6. Fran t&e qualitative analysis of Section 5, and from the sinilar- 
ity between the structures of the vortex layers in supersonic and hyper- 
sonic flows (see, for efaraple, C4Jj one can expect that the expansion 
(2.1) gives the correct values of p and v to within an error of order 
O(E). and that this expsiasion represents the solution ootside a vortex 
lazer of thfckaess 0 - @* = 0(e2). 

If one accepts what has been said above, then pox = p. when 8 = 8,, 
and Formulas (4.2)‘ (4.7) aad (4.8) detersine a ax&d u oa the awfaoe of 
the cone with a precision of O(E), nherebf 4. is given br the forrala 

This fonala can be obtained from Goaor’s (11 results by elemntary 
means but cuskrsome ca~putations. When a - 0, the pormulas (4.7), (4.8) 
aad (3.1) go over into rell-knorn formulas for a coxie with a = 0 (see, 
for example, f!l]) . We note that the vortex lyer exists also near the 
surface of any uonioal body. This i8 related to the fact that 
xera at the surface of a bi3Q td. The velocity componeats oa 
face of the body cab be cowutsd in a$~ analogous way. 

V* becomes 
the sur- 

Not mmtil after this paper bad been writtea did tb% author bs<rOW 

acquainted with a recent article of Cbene 171 *hers aualo8ous resaits 
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are given, but only for the cases of small and intermediate angles of 

attack (Cheng expanded the solution in power series of E and D = sin a/ 
sin Ok and restricted himself to terms of order O(o*). 
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